Enantioselective, intermolecular benzylic C-H amination catalysed by an engineered iron-haem enzyme.
نویسندگان
چکیده
C-H bonds are ubiquitous structural units of organic molecules. Although these bonds are generally considered to be chemically inert, the recent emergence of methods for C-H functionalization promises to transform the way synthetic chemistry is performed. The intermolecular amination of C-H bonds represents a particularly desirable and challenging transformation for which no efficient, highly selective, and renewable catalysts exist. Here we report the directed evolution of an iron-containing enzymatic catalyst-based on a cytochrome P450 monooxygenase-for the highly enantioselective intermolecular amination of benzylic C-H bonds. The biocatalyst is capable of up to 1,300 turnovers, exhibits excellent enantioselectivities, and provides access to valuable benzylic amines. Iron complexes are generally poor catalysts for C-H amination: in this catalyst, the enzyme's protein framework confers activity on an otherwise unreactive iron-haem cofactor.
منابع مشابه
Enzyme-Controlled Nitrogen-Atom Transfer Enables Regiodivergent C–H Amination
We recently demonstrated that variants of cytochrome P450BM3 (CYP102A1) catalyze the insertion of nitrogen species into benzylic C-H bonds to form new C-N bonds. An outstanding challenge in the field of C-H amination is catalyst-controlled regioselectivity. Here, we report two engineered variants of P450BM3 that provide divergent regioselectivity for C-H amination-one favoring amination of benz...
متن کاملP450-Catalyzed Intramolecular sp3 C–H Amination with Arylsulfonyl Azide Substrates
The direct amination of aliphatic C-H bonds represents a most valuable transformation in organic chemistry. While a number of transition metal-based catalysts have been developed and investigated for this purpose, the possibility to execute this transformation with biological catalysts has remained largely unexplored. Here, we report that cytochrome P450 enzymes can serve as efficient catalysts...
متن کاملIntermolecular Aryl C−H Amination through Sequential Iron and Copper Catalysis
A mild, efficient and regioselective method for para-amination of activated arenes has been developed through a combination of iron and copper catalysis. A diverse range of products were obtained from an operationally simple one-pot, two-step procedure involving bromination of the aryl substrate with the powerful Lewis acid iron(III) triflimide, followed by a copper(I)-catalysed N-arylation rea...
متن کاملEnantioselective Intermolecular C-H Functionalization of Allylic and Benzylic sp(3) C-H Bonds Using N-Sulfonyl-1,2,3-triazoles.
The enantioselective intermolecular sp(3) C-H functionalization at the allylic and benzylic positions was achieved using rhodium-catalyzed reactions with 4-phenyl-N-(methanesulfonyl)-1,2,3-triazole. The optimum dirhodium tetracarboxylate catalyst for these reactions was Rh2(S-NTTL)4. The rhodium-bound α-imino carbene intermediates preferentially reacted with tertiary over primary C-H bonds in g...
متن کاملChiral Brønsted acid catalyzed enantioselective intermolecular allylic aminations.
This paper describes an enantioselective intermolecular allylic amination catalyzed by a chiral Brønsted acid via a possible chiral contact ion pair intermediate. A variety of symmetrical or unsymmetrical allylic alcohols can be smoothly aminated to afford the desired products in moderate to high yields with good enantioselectivities and/or regioselectivities.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Nature chemistry
دوره 9 7 شماره
صفحات -
تاریخ انتشار 2017